ART2543

User's Manual

(
Beijing ART Technology Development Co., Ltd.

Contents

Contents 2
Chapter 1 Overview 3
Chapter 2 Components Layout Diagram and a Brief Description4
2.1 The Main Component Layout Diagram4
2.2 The Function Description for the Main Component 4
2.2.1 Signal Input and Output Connectors 4
2.2.2 Board Base Address Selection 5
Chapter 3 Signal Connectors 7
3.1 The Definition of Signal Input and Output Connectors 7
3.2 Timer/Counter Signal Connection 8
Chapter 4 Timer/Counter Function9
4.1 Subtraction Counter 9
4.2 Addition Counter 12
4.3 Frequency Measurement Function 15
Chapter 5 Address Allocation Table 16
Chapter 6 Notes, Calibration and Warranty Policy 20
6.1 Notes 20
6.2 Warranty Policy 20
Products Rapid Installation and Self-check 21
Rapid Installation 21
Self-check 21
Delete Wrong Installation 21

Chapter 1 Overview

ART2543 is a Counter card based on PC104 bus. It can be directly connected with PC104 interface of computer to constitute the laboratory, product quality testing center and systems for different areas of data acquisition, waveform analysis and processing. It may also constitute the monitoring system for industrial production process.

Unpacking Checklist

Check the shipping carton for any damage. If the shipping carton and contents are damaged, notify the local dealer or sales for a replacement. Retain the shipping carton and packing material for inspection by the dealer.

Check for the following items in the package. If there are any missing items, contact your local dealer or sales.
$>$ ART2543 Data Acquisition Board
> ART Disk
a) user's manual (pdf)
b) drive
c) catalog
> Warranty Card

Counter/Timer Function

$>$ 32-bit counter/timer, 8 independent counters (can be set to Up or Down Counter by the software)
$>$ Count Mode: 6 modes
> Electrical Standards: TTL level
> Gate (GATEn): rising edge, high level, low level
> Counter Output (OUTn): high level, low level
> Operating Temperature Range: $0^{\circ} \mathrm{C} \sim 55^{\circ} \mathrm{C}$
> Storage Temperature Range: $-20^{\circ} \mathrm{C} \sim 70^{\circ} \mathrm{C}$

Frequency Measurement Function

> Frequency Measurement Channels: 8-channel software selectable
> Frequency Measurement Signal: 0 ~ 5V TTL level
> Frequency Measurement Type: counting
> Frequency Measurement Range: $1 \mathrm{~Hz} \sim 10 \mathrm{MHz}$
> Frequency Measurement Accuracy: $\pm 1 \mathrm{~Hz}$

Other Features

Board Base Address: 300H
Dimension: $90.3 \mathrm{~mm}(\mathrm{~L}) * 96 \mathrm{~mm}(\mathrm{~W}) * 16 \mathrm{~mm}(\mathrm{H})$

Chapter 2 Components Layout Diagram and a Brief Description

2.1 The Main Component Layout Diagram

2.2 The Function Description for the Main Component

2.2.1 Signal Input and Output Connectors

2.2.2 Board Base Address Selection

ADDR1: board base address DIP switches. Board base address can be set to binary code which from 200H to 3E0H be divided by 16 , board base address defaults 300 H , will occupy the base address of the date of 20 consecutive I/O addresses. Switch No. 1, 2, 3, 4, 5, 6, 7 correspond to address bits A4, A5, A6, A7, A8, A9, A10, A11 (A10, A11 are reserved) .

Board base address selection is as follows: when the ADDR1 switches dial to "ON" that means high virtual value is 1 , the switch to the other side means the low virtual is 0 .

Board base address selection switch ADDR1shown as following:

For example, the default base addresses is 300 H , shown as the following:

Common base address

Chapter 3 Signal Connectors

3.1 The Definition of Signal Input and Output Connectors

30-pin CN1 definition

Pin definition:

Pin name	Type	Pin function definition
CLK0 ~ 7	Input	Timer/Counter clock source input, the reference ground use O. GND
GATE0 ~ 7	Input	Timer/Counter gate input, the reference ground use O. GND
OUT0 ~ 8	Output	Timer/Counter output, the reference ground use O. GND
$+5 V$	Output	Output +5V power
DGND	GND	Digital ground

3.2 Timer/Counter Signal Connection

Chapter 4 Timer/Counter Function

In the counter mode, we can use CNTPara. CNTMode to set Up or Down count: When CNTPara. CNTMode $=0$, it is subtraction, do subtract " 1 " operation, until the count value becomes 0 ; when CNTPara. CNTMode $=1$, it is addition, do add "1" operation, until the counter value becomes 4294967295 ($2^{32}-1$).

4.1 Subtraction Counter

Mode 0: Interrupt on terminal count

Under this mode, when given the initial value, if GATE is high level, the counter immediately begins to count by subtracting " 1 " each time, the counter output OUT turns into low level; when the count ends and the count value becomes 0 , the counter output OUT becomes and keeps high level until given the initial value or reset. If a counter which is counting is given a new value, the counter will begin to count from the new value by subtracting " 1 " each time. GATE can be used to control the count, GATE=1 enables counting; GATE=0 disables counting.
OUT signal changes high from low can be used as interrupt request.
Time diagram is shown in Figure 1.

Mode 0

Figure 1

Mode 1: Hardware retriggerable one-shot

The mode can work under the role of GATE. After given the initial count value N, OUT becomes high level, the counter begins to count until the appearance of the rising edge of GATE, at this moment OUT turns into low level; when the count ends and the count value becomes 0, OUT becomes high level, that is, the output one-shot pulse width is determined by the initial count value N . If the current operation does not end and another rising edge of GATE appears, then the current count stops, the counter begins to count from N once again, and then the output one-shot pulse will be widened. When the count reduction of the counter has not yet reached zero, but it is given a new value N1. Only when it is the rising edge of GATE, the counter starts to count from N1.

Time diagram is shown in Figure 2.

Mode 1

Figure 2

Mode 2: Rate Generator

Under this mode, the counter is given the initial count value N and begins to count from ($\mathrm{N}-1$), OUT becomes high level. When the count value becomes 0, OUT turns into low level. After a CLK cycle, OUT resumes high level, and the counter automatically load the initial value N and begin to count from ($\mathrm{N}-1$). Thus the output will continue to output a negative pulse, its width is equal to one clock cycle, the clock number between the two negative pulses is equal to the initial value that is given to the counter. GATE=1 enables counting; GATE=0 disables counting. GATE has no effect on OUT. If change the initial count when counting, it will be effective next time.
Time diagram is shown in figure 3.
Mode 2

Figure 3

Mode 3: Square wave mode

Similar to Mode 2, the counter is given the initial count value N and begins to count from ($\mathrm{N}-1$). When the signal of GATE is high level, it starts to count, timer/counter begins to count by subtracting " 1 " each time, more than half the initial count value. The output OUT has remained high level, when the count value is more than half of the initial count value; but the output OUT becomes low level, when the count value is less than half of the initial value. If the initial count value N is an even number, the output is $1: 1$ square-wave; if the initial count value N is an odd number, the output OUT has remained high level during the previous $(\mathrm{n}+1) / 2$ count period; but the output OUT becomes low level during the post ($n-1$)/2 count period, that is, the high level has one clock cycle more than the low level. If change the initial
count when counting, it will be effective next time. When GATE $=0$, the count is prohibited, when GATE $=1$, the count is permitted. Time diagram is shown in figure 4.

Mode 3

Figure 4

Mode 4: Software triggered strobe

Under this mode, the counter is given the initial count value N and begins to count, the output OUT becomes high level. When the count value becomes 0 , it immediately outputs a negative pulse which is equal to the width of one clock cycle. If given a new count value when counting, it will be effective immediately. GATE=1 enables counting; GATE=0 disables counting. Time diagram is shown in figure 5.

Mode 4

Figure 5

Mode 5: Hardware triggered strobe

Under this mode, when the signal of GATE is on the rising edge, the counter starts to count (so it is called hardware trigger), the output OUT has remained high level. When the count value becomes 0 , it outputs a negative pulse which is equal to the width of one clock cycle. And then the rising edge of GATE signal can re-trigger, the counter starts to count from the initial count value again, in the count period, the output has remained high level. When the count reduction of the counter has not yet reached zero, but it is given a new value N1. Only when it is the rising edge of GATE, the counter starts to count from N1. Time diagram is shown in figure 6.

Mode 5

Figure 6

4.2 Addition Counter

For illustration, make $M=4294967295=2^{32}-1$, the maximum count value of the addition.

If the initial value is $4,294,967,291$, is recorded as (M-4); if it is $4,294,967,292$, is recorded as (M-3), and so on.

Mode 0: Interrupt on terminal count

Under this mode, when given the initial value n, if GATE is high level, the counter immediately begins to count by addition " 1 " each time, the counter output OUT turns into low level; when the count ends and the count value becomes M, the counter output OUT becomes and keeps high level until given the initial value or reset. If a counter which is counting is given a new value, the counter will begin to count from the new value by addition " 1 " each time. GATE can be used to control the count, GATE=1 enables counting; GATE=0 disables counting.
OUT signal changes from low to high can be used as interrupt request.
Time diagram is shown in Figure 7.

Mode 0

Figure 7

Mode 1: Hardware retriggerable one-shot

The mode can work under the role of GATE. After given the initial count value n, OUT becomes high level, the counter begins to count until the appearance of the rising edge of GATE, at this moment OUT turns into low level; when the count ends and the count value becomes M, OUT becomes high level, that is, the output one-shot pulse width is determined by the M and initial count value $n(M-n)$. If the current operation does not end and another rising edge of

GATE appears, then the current count stops, the counter begins to count from n once again, and then the output one-shot pulse will be widened. When the count reduction of the counter has not yet reached M, but it is given a new value $n 1$. Only when it is the rising edge of GATE, the counter starts to count from n1.
Time diagram is shown in Figure 8.
Mode 1

Figure 8

Mode 2: Rate Generator

Under this mode, the counter is given the initial count value n and begins to count from ($\mathrm{n}+1$), OUT becomes high level. When the count value becomes M, OUT turns into low level. After a CLK cycle, OUT resumes high level, and the counter automatically load the initial valuen and begin to count from $(\mathrm{n}+1)$. Thus the output will continue to output a negative pulse, its width is equal to one clock cycle, the clock number between the two negative pulses is equal to the difference of the M and initial value that is given to the counter ($\mathrm{M}-\mathrm{n}$). GATE= 1 enables counting; GATE= 0 disables counting. GATE has no effect on OUT. If change the initial count when counting, it will be effective next time.
Time diagram is shown in figure 9.

Mode 2

Figure 9

Mode 3: Square wave mode

Similar to Mode 2, the counter is given the initial count value n and begins to count from ($\mathrm{n}+1$). When the signal of GATE is high level, it starts to count, timer/counter begins to count by addition " 1 " each time, after finish the first half count, the output OUT has remained high level, when do the post half count, the output OUT becomes low leve. If the initial count value n is an even number, the output is $1: 1$ square-wave; if the initial count value n is an odd number, the output OUT has remained high level during the previous ($\mathrm{M}-\mathrm{n}+1$)/2 count period; but the output OUT becomes low level
during the post (M-n-1)/2 count period, that is, the high level has one clock cycle more than the low level. If change the initial count when counting, it will be effective next time. GATE=1 enables counting; GATE=0 disables counting. the count is permitted. Time diagram is shown in figure 10.

Mode 3

Figure 10

Mode 4: Software triggered strobe

Under this mode, the counter is given the initial count value n and begins to count, the output OUT becomes high level. When the count value becomes M , it immediately outputs a negative pulse which is equal to the width of one clock cycle. If given a new count value when counting, it will be effective immediately. GATE=1 enables counting; GATE=0 disables counting. Time diagram is shown in figure 11.

Mode 4

Figure 11

Mode 5: Hardware triggered strobe

Under this mode, when the signal of GATE is on the rising edge, the counter starts to count (so it is called hardware trigger), the output OUT has remained high level. When the count value becomes M , it outputs a negative pulse which is equal to the width of one clock cycle. And then the rising edge of GATE signal can re-trigger, the counter starts to count from the initial count value again, in the count period, the output has remained high level. When the count addition of the counter has not yet reached M, but it is given a new value $n 1$. Only when it is the rising edge of GATE, the counter starts to count from n1. Time diagram is shown in figure 12.

Mode 5

Figure 12

4.3 Frequency Measurement Function

When the unknown frequency signal is a digital high-frequency signal, we can use of frequency measurement counting. In this mode, first, set the timing t 0 of the counter, hardware test count the number n in t 0 , then we can calculate the frequency signal cycle to get the signal frequency, see figure below:

Frequency Measurement Function

As shown above, the frequency of the signal is $1 /(\mathrm{t} 0 / \mathrm{n})$.

Chapter 5 Address Allocation Table

ART2543 register address allocation table

Base address+0x0 write control address	Base address +0x2 write data	Base address +0x2 read data
0x0000	Low 16-bit initial value of counter 0	Low 16-bit current value of counter 0
0x0001	High 16-bit initial value of counter 0	High 16-bit current value of counter 0
0x0002	Low 16-bit initial value of counter 1	Low 16-bit current value of counter 1
0x0003	High 16-bit initial value of counter 1	High 16-bit current value of counter 1
0x0004	Low 16-bit initial value of counter 2	Low 16-bit current value of counter 2
0x0005	High 16-bit initial value of counter 2	High 16-bit current value of counter 2
0x0006	Low 16-bit initial value of counter 3	Low 16-bit current value of counter 3
0x0007	High 16-bit initial value of counter 3	High 16-bit current value of counter 3
0x0008	Low 16-bit initial value of counter 4	Low 16-bit current value of counter 4
0x0009	High 16-bit initial value of counter 4	High 16-bit current value of counter 4
0x000a	Low 16-bit initial value of counter 5	Low 16-bit current value of counter 5
0x000b	High 16-bit initial value of counter 5	High 16-bit current value of counter 5
0x000c	Low 16-bit initial value of counter 6	Low 16-bit current value of counter 6
0x000d	High 16-bit initial value of counter 6	High 16-bit current value of counter 6
0x000e	Low 16-bit initial value of counter 7	Low 16-bit current value of counter 7
Ox000f	High 16-bit initial value of counter 7	High 16-bit current value of counter 7
0x0010	Low 3-bit, counter 0 mode control word	Read counter 0 mode control word
0x0011	Low 3-bit, counter 1 mode control word	Read counter 1 mode control word
0x0012	Low 3-bit, counter 2 mode control word	Read counter 2 mode control word
0x0013	Low 3-bit, counter 3 mode control word	Read counter 3 mode control word
0x0014	Low 3-bit, counter 4 mode control word	Read counter 4 mode control word
0x0015	Low 3-bit, counter 5 mode control word	Read counter 5 mode control word
0x0016	Low 3-bit, counter 6 mode control word	Read counter 6 mode control word
0x0017	Low 3-bit, counter 7 mode control word	Read counter 7 mode control word
0x0018	Low 8-bit, counter UP and Down control Lowest bit [0]: counter 0 addition and subtraction control Highest bit [7]: counter 7 addition and subtraction control	Read counter UP and Down control signal Lowest bit [0]: counter 0 addition and subtraction control Highest bit [7]: counter 7 addition and subtraction control
0x0019	Lowest bit [0]: I/O device interrupt enable output	Lowest bit [0]: read I/O device interrupt enable output
0x001a	Lowest bit [0]: I/O device DMA enable interrupt request	Lowest bit [0]: read I/O device DMA enable interrupt request
0x001b	Lowest bit [0]: IO channel ready to enable output	Lowest bit [0]: read IO channel ready to enable output
0x001c	Low 3-bit, interrupt control Lowest bit [0]: interrupt request	Read interrupt control Lowest bit [0]: interrupt request

	Higher bit [1]: DMA interrupt request Highest bit [2]: IO channel ready	Higher bit [1]: DMA interrupt request Highest bit [2]: IO channel ready
0x001d	Lowest bit [0]: The first channel function selection 0 : timer count 1 : frequency measurement	Lowest bit [0] is valid, the end flag signal of the first channel frequency measurement $=0$: the end of frequency measurement = 1 : doing frequency measurement counting
0x001e	Lowest bit [0]: The first channel clear signal 0 : clear 1: normal count	Lowest bit [0] is valid, the end flag signal of the second channel frequency measurement $=0$: the end of frequency measurement $=1$: doing frequency measurement counting
0x001f	Lowest bit [0] is effective, the first channel test frequency pulse width setting, period of high-level that time 1s	Lowest bit [0] is valid, the end flag signal of the third channel frequency measurement $=0$: the end of frequency measurement $=1$: doing frequency measurement counting
0x0020	Lowest bit [0] is effective, the second channel test frequency pulse width setting, a period of high-level that time 1s	Lowest bit [0] is valid, the end flag signal of the fourth channel frequency measurement $=0$: the end of frequency measurement $=1$: doing frequency measurement counting
0x0021	Lowest bit [0] is effective, the third channel test frequency pulse width setting, period of high-level that time 1s	Lowest bit [0] is valid, the end flag signal of the fifth channel frequency measurement $=0$: the end of frequency measurement $=1$: doing frequency measurement counting
0x0022	Lowest bit [0] is effective, the fourth channel test frequency pulse width setting, a period of high-level that time 1s	Lowest bit [0] is valid, the end flag signal of the sixth channel frequency measurement $=0$: the end of frequency measurement $=1$: doing frequency measurement counting
0x0023	Lowest bit [0] is effective, the fifth channel test frequency pulse width setting, period of high-level that time 1s	Lowest bit [0] is valid, the end flag signal of the seventh channel frequency measurement $=0$: the end of frequency measurement $=1$: doing frequency measurement counting
0x0024	Lowest bit [0] is effective, the sixth channel test frequency pulse width setting, period of high-level that time 1s	Lowest bit [0] is valid, the end flag signal of the eighth channel frequency measurement $=0$: the end of frequency measurement $=1$: doing frequency measurement counting
0x0025	Lowest bit [0] is effective, the seventh channel test frequency pulse width setting, a period of high-level that time 1s	The first channel frequency measurement, standard counting value low 16 -bit
0x0026	Lowest bit [0] is effective, the eighth channel test frequency pulse width setting, a period of high-level that time 1 s	The first channel frequency measurement, standard counting value high 16 -bit
0x0027	Lowest bit [0]: The second channel clear signal 0 : clear 1: normal count	The second channel frequency measurement, standard counting value low 16 -bit
0x0028	Lowest bit [0]: The third channel clear signal	The second channel frequency measurement, standard counting value high 16 -bit

	0: clear 1: normal count	
0x0029	Lowest bit [0]: The fourth channel clear signal 0 : clear 1: normal count	The third channel frequency measurement, standard counting value low 16-bit
0x002a	Lowest bit [0]: The fifth channel clear signal 0 : clear 1: normal count	The third channel frequency measurement, standard counting value high 16-bit
0x002b	Lowest bit [0]: The sixth channel clear signal 0 : clear 1: normal count	The fourth channel frequency measurement, standard counting value low 16-bit
0x002c	Lowest bit [0]: The seventh channel clear signal 0 : clear 1: normal count	The fourth channel frequency measurement, standard counting value high 16-bit
0x002d	Lowest bit [0]: The eighth channel clear signal 0 : clear 1: normal count	The fifth channel frequency measurement, standard counting value low 16-bit
0x002e	Lowest bit [0]: The second channel function selection 0 : timer count 1 : frequency measurement	The fifth channel frequency measurement, standard counting value high 16-bit
0x002f	Lowest bit [0]: The third channel function selection 0 : timer count 1 : frequency measurement	The sixth channel frequency measurement, standard counting value low 16-bit
0x0030	Lowest bit [0]: the fourth channel function selection 0 : timer count 1 : frequency measurement	The sixth channel frequency measurement, standard counting value high 16-bit
0x0031	Lowest bit [0]: the fifth channel function selection 0 : timer count 1 : frequency measurement	The seventh channel frequency measurement, standard counting value low 16-bit
0x0032	Lowest bit [0]: the sixth channel function selection 0 : timer count 1 : frequency measurement	The seventh channel frequency measurement, standard counting value high 16-bit
0x0033	Lowest bit [0]: the seventh channel function selection 0 : timer count 1 : frequency measurement	The eighth channel frequency measurement, standard counting value low 16-bit
0x0034	Lowest bit [0]: the eighth channel function selection 0 : timer count 1 : frequency measurement	The eighth channel frequency measurement, standard counting value high 16-bit
0x0035		The first channel frequency measurement, the measured frequency counting value low 16-bit
0x0036		The first channel frequency measurement, the measured frequency counting value high 16-bit
0x0037		The second channel frequency measurement, the measured frequency counting value low 16-bit
0x0038		The second channel frequency measurement, the measured frequency counting value high 16-bit

0x0039		The third channel frequency measurement, the measured frequency counting value low 16-bit
0x003a		The third channel frequency measurement, the measured frequency counting value high 16 -bit
0x003b		The fourth channel frequency measurement, the measured frequency counting value low 16-bit
0x003c		The fourth channel frequency measurement, the measured frequency counting value high 16 -bit
0x003d		The fifth channel frequency measurement, the measured frequency counting value low 16-bit
0x003e		The fifth channel frequency measurement, the measured frequency counting value high 16 -bit
0x003f		The sixth channel frequency measurement, the measured frequency counting value low 16-bit
0x0040		The sixth channel frequency measurement, the measured frequency counting value high 16 -bit
0x0041		The seventh channel frequency measurement, the measured frequency counting value low 16-bit
0x0042		The seventh channel frequency measurement, the measured frequency counting value high 16-bit
0x0043		The eighth channel frequency measurement, the measured frequency counting value low 16-bit
0x0044		The eighth channel frequency measurement, the measured frequency counting value high 16 -bit

Chapter 6 Notes, Calibration and Warranty Policy

6.1 Notes

In our products' packing, user can find a user manual, ART2543 module and a quality guarantee card. Users must keep quality guarantee card carefully, if the products have some problems and need repairing, please send products together with quality guarantee card to ART, we will provide good after-sale service and solve the problem as quickly as we can. When using ART2543, in order to prevent the IC (chip) from electrostatic harm, please do not touch IC (chip) in the front panel of ART2543module.

6.2 Warranty Policy

Thank you for choosing ART. To understand your rights and enjoy all the after-sales services we offer, please read the following carefully.

1. Before using ART's products please read the user manual and follow the instructions exactly. When sending in damaged products for repair, please attach an RMA application form which can be downloaded from: www.art-control.com.
2. All ART products come with a limited two-year warranty:
$>$ The warranty period starts on the day the product is shipped from ART's factory
$>$ For products containing storage devices (hard drives, flash cards, etc.), please back up your data before sending them for repair. ART is not responsible for any loss of data.
$>$ Please ensure the use of properly licensed software with our systems. ART does not condone the use of pirated software and will not service systems using such software. ART will not be held legally responsible for products shipped with unlicensed software installed by the user.
3. Our repair service is not covered by ART's guarantee in the following situations:
$>$ Damage caused by not following instructions in the User's Manual.
> Damage caused by carelessness on the user's part during product transportation.
$>$ Damage caused by unsuitable storage environments (i.e. high temperatures, high humidity, or volatile chemicals).
> Damage from improper repair by unauthorized ART technicians.
> Products with altered and/or damaged serial numbers are not entitled to our service.
4. Customers are responsible for shipping costs to transport damaged products to our company or sales office.
5. To ensure the speed and quality of product repair, please download an RMA application form from our company website.

Products Rapid Installation and Self-check

Rapid Installation

Product-driven procedure is the operating system adaptive installation mode. After inserting the disc, you can select the appropriate board type on the pop-up interface, click the button【driver installation】; or select CD-ROM drive in Resource Explorer, locate the product catalog and enter into the APP folder, and implement Setup.exe file. After the installation, pop-up CD-ROM, shut off your computer, insert the PCI card. If it is a USB product, it can be directly inserted into the device. When the system prompts that it finds a new hardware, you do not specify a drive path, the operating system can automatically look up it from the system directory, and then you can complete the installation.

Self-check

At this moment, there should be installation information of the installed device in the Device Manager (when the device does not work, you can check this item.). Open "Start -> Programs -> ART Demonstration Monitoring and Control System -> Corresponding Board -> Advanced Testing Presentation System", the program is a standard testing procedure. Based on the specification of Pin definition, connect the signal acquisition data and test whether AD is normal or not. Connect the input pins to the corresponding output pins and use the testing procedure to test whether the switch is normal or not.

Delete Wrong Installation

When you select the wrong drive, or viruses lead to driver error, you can carry out the following operations: In Resource Explorer, open CD-ROM drive, run Others-> SUPPORT-> PCI.bat procedures, and delete the hardware information that relevant to our boards, and then carry out the process of section I all over again, we can complete the new installation.

